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SUMMARY

The time splitting method is frequently used in numerical integration of �ow equations with source terms
since it allows almost independent programming for the source part. In this paper we will consider the
question of convergence to steady state of the time splitting method applied to k–� turbulence models.
This analysis is derived from a properly de�ned scalar study and is carried out with success for the
coupled k–� equations. It is found that the time splitting method does not allow convergence to steady
state for any choice of �nite values of the time step. Numerical experiments for some typical turbulent
compressible �ow problems support the fact that the time splitting method is always nonconvergent,
while its nonsplitting counterpart is convergent. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulence models involve nonlinear source terms. Numerous e�ects have been made to
compute turbulent �ows with such models [1–8]. The split method for treating problems
with source terms has been presented in detail in Chapter 15 of Reference [9]. Kruzkov [10]
proved the existence and uniqueness of the solution for the scalar conservation laws with
source terms. Month�e [11] proved that the numerical solution of the splitting method con-
verges towards the entropy solution in the scalar case. Conservation laws with source terms
often have steady state solutions. Tang and Teng [12] proved this method always converges
to the unique weak solution satisfying the entropy condition when computing discontinuous
solutions of nonhomogeneous scalar conservation laws. However, it is well known that the
time splitting method has di�culty in preserving the steady states. The so-called well-balanced
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schemes are introduced to capture the steady state solution of hyperbolic systems with source
terms [13–15].
Splitting methods have been proposed for more general problems other than those with

source terms [16, 17]. For example, in some large-scale engineering problems, operator split-
ting may be the only known practical way of carrying out time integration. In the area of
geometric integration, such splitting methods are frequently used to obtain structure-preserving
algorithms [18, 19]. Splitting is used in di�erent ways, sometimes one applies splitting to the
space dimensions, like in the original work of Strang [16]. Another much used possibility is
to split according to some physical phenomenon, for instance, by splitting linear sti� di�usion
terms and nonlinear convection terms and integrating each of them separately [20].
In this paper, we will investigate whether the time splitting method allows convergence

to a (numerical) steady state for the important k–� model suitable for describing engineering
turbulent �ows. Possibly, the calculation, starting with some initial state, yields a solution
which oscillates in time, no matter how long we perform the integration. In this case, we also
say that the calculation does not converge to zero machine.
We will �rst build a suitable method for the analysis of the numerical nonconvergence.

There seems to be no e�cient way but to �rst gain insight from a scalar analysis and then
make an extension to the case of k–� model.
We will �rst consider a scalar equation with linear, quadratic, cubic and n-order source

terms. A method to give necessary condition of convergence to a numerical steady state will
be built. We will also derive expressions for the steady state errors. Precisely, we will estimate
the steady state error in terms of a sti�ness parameter. The steady state error analysis will
be extended to the k–� model for turbulent �ow computations. The result shows the splitting
method will lead to nonconvergence for k–� turbulence model equations, no matter how we
diminish the time step.
The rest of the paper will be organized as follows. In Section 2 we brie�y outline the

time splitting method and build a method to estimate the steady state error. In Section 3, we
analyse steady state errors for various scalar equations and present numerical experiments to
support the validity of the theory. In Section 4, the analysis is extended to the two equation
turbulence model. Numerical experiments will be presented in Section 5. Concluding remarks
will be stated in Section 6.

2. TIME SPLITTING METHOD, CONVERGENCE AND STEADY STATE ERROR

2.1. Time splitting method

Consider the conservation law

Ut =P(@)U + S(U ) (1)

where P(@) is the advection–di�usion operator and S(U ) is the source term.
Equation (1) is solved by a time splitting method, in which one alternates at each time

iteration between solving the homogeneous conservation law (PDE step)

Ut =P(@)U (2)
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and the ordinary di�erential equation (ODE step)

Ut = S(U ) (3)

The exact steady state solution U , also called state equilibrium, satis�es

P(@)U + S(U )=0 (4)

which means that the source term and the homogeneous term balance each other, as expected
for any steady problem.
Before proceeding further, we must emphasize that we are not dealing with nonconvergence

due to spatial discretization. But in performing numerical computations in subsequent sections,
we have to use spatial discretization for the PDE part. In that case, the steady state solution
is the solution of the spatially discrete counterpart of (4). Hence, the analysis is performed
just for the semidiscrete case (namely, discrete in time), but once we perform numerical
computation the comparison is done for the fully discrete case. We have to discard the
complexity using this simpli�cation as one usually does, but fortunately this leads to useful
results.
The approach we adopt to analyse the steady state errors is as follows. First, we assume

that a steady state satisfying (4) exists. Then, we apply the time splitting method to this
steady state solution. If the numerical increment remains to be zero or small enough, then
this numerical scheme preserves this steady state. If this increment is large, then it means that
a steady state can never be reached, and this increment can be interpreted as the steady state
error of the numerical method (not to confuse with the error in steady state, which means
errors in steady state due to spatial discretization).
Let U 0 be a solution satisfying the steady state equation (4) (or its spatially discrete

counterpart, but in the subsequent analysis we no longer make this distinction).
Now, consider the numerical solution. The homogenous part will be approximated by the

�rst-order Euler method in time. There is no need to know the details of the spatial discretiza-
tion method for the PDE step. The ODE step will be approximated by an implicit method. In
the next section we will also consider explicit numerical method and pure analytical method
for the source term.
First, consider the numerical discretization of the homogeneous part

�U 1 =U 0 + �tP(@)U 0

which, by using (4), can be written as

�U 1 =U 0 −�tS(U 0) (5)

This gives an intermediate solution �U 1 to be used as initial condition of the ODE step (3),
whose numerical counterpart using implicit treatment reads

U 1 = �U 1 +
�tS( �U 1)(

1− @S
@U

∣∣∣∣
�U 1
�t

) (6)

where U 1 is the solution after an entire step and �t is the time step.
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2.2. Method to estimate the steady-state error

For convenience, we make the following de�nition.

De�nition 1
The steady state error for the time splitting method is de�ned by

�U =U 1 −U 0 (7)

or equivalently

R=
U 1 −U 0

U 0 − � (8)

where � is the stable equilibrium, which is the solution for the equation S(U )=0. For the
time splitting method to preserve a steady state solution, we require R or �U to be small
enough. Now we will estimate the steady state error �U or R.

Proposition 2
For the time splitting method, the steady state error is given by

�U =

�t

[
−
(
�tS(U 0)

)2
2

@2S
@U 2

∣∣∣∣
U0

+
(�tS(U 0))3

3
@3S
@U 3

∣∣∣∣
U0

+ · · ·
]

[
1−

(
@S
@U

∣∣∣∣
U0

−�tS(U 0)
@2S
@U 2

∣∣∣∣
U0

+
(�tS(U 0))2

2
@3S
@U 3

∣∣∣∣
U0

+ · · ·
)
�t

] (9)

Proof
Combining (5) and (6) yields

U 1 −U 0 =
�tS( �U 1)(

1− @S
@U

∣∣∣∣
�U 1
�t

) −�tS(U 0)

=
�tS

(
U 0 −�tS(U 0)

)(
1− @S

@U

∣∣∣∣
U 0−�tS(U 0)

�t

) −�tS(U 0) (10)

By expanding the two terms S(U 0 −�tS(U 0)) and @S=@U |U 0−�tS(U 0) as

S(U 0 −�tS(U 0))

= S(U 0)−�tS(U 0)
@S
@U

∣∣∣∣
U0

+
(�tS(U 0))2

2
@2S
@U 2

∣∣∣∣
U0

− (�tS(U 0))3

3!
@3S
@U 3

∣∣∣∣
U0

+O((�tS(U 0))4)
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and

@S
@U

∣∣∣∣
U0−�tS(U 0)

=
@S
@U

∣∣∣∣
U0

−�tS(U 0)
@2S
@U 2

∣∣∣∣
U0

+
(�tS(U 0))2

2
@3S
@U 3

∣∣∣∣
U0

+O((�tS(U 0))3)

we obtain the �nal expression (9) from (10).

One can also solve the ordinary di�erential equation (3) �rst and treat the homogeneous
PDE part next, see Reference [11]. In this case, we have

�U 1 = U 0 − �tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

) (11)

U 1 = �U 1 + �tS( �U 1) (12)

Using (11) and (12) we obtain

�U =U 1 −U 0 =�tS( �U 1)− �tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

)

=�tS

⎡
⎢⎢⎣U 0 − �tS(U 0)(

1 +
@S
@U

∣∣∣∣
U 0
�t

)
⎤
⎥⎥⎦− �tS(U 0)(

1 +
@S
@U

∣∣∣∣
U 0
�t

) (13)

which, after using Taylor expansion, yields

�U =�t

⎡
⎢⎢⎣S(U 0)− @S

@U

∣∣∣∣
U 0

�tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

) + 1
2
@2S
@U 2

∣∣∣∣
U 0

⎧⎪⎪⎨
⎪⎪⎩

�tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

)
⎫⎪⎪⎬
⎪⎪⎭
2⎤
⎥⎥⎦

− �tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

)
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=�tS(U 0)−
(
�t

@S
@U

∣∣∣∣
U 0
+ 1

)
�tS(U 0)(

1 +
@S
@U

∣∣∣∣
U 0
�t

)

+
�t
2
@2S
@U 2

∣∣∣∣
U 0

⎧⎪⎪⎨
⎪⎪⎩

�tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

)
⎫⎪⎪⎬
⎪⎪⎭
2

+O((�tS(U 0))3)

:=
�t
2
@2S
@U 2

∣∣∣∣
U 0

⎧⎪⎪⎨
⎪⎪⎩

�tS(U 0)(
1 +

@S
@U

∣∣∣∣
U 0
�t

)
⎫⎪⎪⎬
⎪⎪⎭
2

(14)

The steady state error (8) can also be estimated by using (14) for any speci�c source
term S(U ).

3. STEADY STATE ERRORS FOR SOME KINDS OF SOURCE TERMS
AND NUMERICAL EXPERIMENTS

In this section we consider power-function-type source term.

3.1. General high-order nonlinear source term

In this part, we consider the general source term in the form

S(U )= − c(U − s(x))n; (n¿ 2 and n∈N )
Proposition 3
For the general source term s= − c(U − s(x))n; (n¿ 2), c is a constant, the steady state error
ratio is given by

R(Y )=
1
2n(n− 1)Y 3 + 1

3n(n− 1)(n− 2)Y 4
1 + nY + n(n− 1)Y 2 + 1

2n(n− 1)(n− 2)Y 3 (15)

where

Y = c�t(U 0 − s(x))n−1 (16)

is the sti�ness parameter.

Proof
Substitute S(U )= − c(U − s(x))n into (9), we obtain

�U =U 1 −U 0 =
A+ B

1−�t[C −D]
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with

A= 1
2n(n− 1)(c�t)3(U 0 − s(x))3n−2

B= 1
3n(n− 1)(n− 2)(c�t)4(U 0 − s(x))4n−3

C =−nc(U − s(x))n−1 − n(n− 1)c2�t(U 0 − s(x))2n−2

D= 1
2n(n− 1)(n− 2)c2(�t)3(U 0 − s(x))3n−3

Then, we have

R=
�U

U 0 − s(x)

=
− 1
2n(n− 1)Y 3 + 1

3n(n− 1)(n− 2)Y 4
1 + nY + n(n− 1)Y 2 + 1

2n(n− 1)(n− 2)Y 3

where Y =(c�t)(U 0 − s(x))n−1.

3.2. Linear source term

In the case of a linear source term, S(U ) is de�ned by

S(U )= − cU (17)

Using (9) for the linear source term (17), we �nd that the steady state error is zero, i.e. the
time splitting method preserves steady states for a linear source term. In other words, the
time splitting method allows for convergence to a steady state for a linear source term.
Now we perform numerical calculations just for the following scalar equation:

@U
@t
+
@f(U )
@x

= − c(U − s(x)) (18)

Here, f(U ) is �ux function. The advection term is discretized by �rst-order upwind scheme
(using other kinds of stable schemes does not a�ect the conclusions).

Example 1
The problem is de�ned by

c=1; f(U )=5U; s(x)=
{
x2=1000 06 x6 50
(x − 100)2=1000 506 x6 100

U (x; 0)=3 for x¿0; U (0; t)=0 for t¿0

The time step is �t=0:04, the space grid scale is �h=0:2. The CFL (Courant, Friedrichs,
Lewy) number is 1 so that the method is stable in the sense of von Neumann. The implicit
treatment for the source term in the second step guarantees unconditional stability of the
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X

0
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1
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4

U

steady solution
stable equilibrium

X

Figure 1. The converged numerical result for example 1. Note that the di�erence between
the numerical steady state solution and the steady state equilibrium (steady state solution

of the exact equation) is due to spatial discretization.

source-term treatment. The calculation converges to a steady state close to the stable equilib-
rium. The stable equilibrium is the solution for the source equation S(U )=0 (see Reference
[21]). The steady state (numerical) solution is displayed in Figure 1. We also displayed the
stable equilibrium of the exact equation. Note that the discrepancy between the numerical
steady state solution and the exact steady state solution is due to spatial discretization, not
due to convergence in time.
The convergence evolution based on the residual is shown in Figure 2.

Example 2
The problem is de�ned by

c=1; f(U )=U 2; s(x)=
{
x2=1000 06 x6 50
(x − 100)2=1000 506 x6 100

U (x; 0)=3 for x¿0; U (0; t)=0 for t¿0

The time step is �t=0:03, which meets the CFL condition requirement, and the space
grid scale is �h=0:2. Similarly as in the previous case, the calculation converges to a steady
state without di�culty. The smooth convergent steady solution is shown in Figure 3, which
compares well with the stable equilibrium. The convergence evolution of maximum residual
is shown in Figure 4.
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Figure 2. Convergence history for example 1.
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Figure 3. The numerical result for example 2. Note that the di�erence between the numerical
steady state solution and the steady state equilibrium (steady state solution of the exact

equation) is due to spatial discretization.
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Figure 4. Convergence history for example 2.

3.3. Second-order nonlinear source term

In the case of a second-order source term, S(U ) is de�ned by

S(U )= − c(U − s(x))2 (19)

According to formula (15), for the source term (19), the steady state error is given by

R(Y )=
Y 3

1 + 2Y + 2Y 2
(20)

where

Y = c�t(U 0 − s(x)) (21)

is the sti�ness parameter.
The steady state error R=R(Y ) is displayed in Figure 5. It is clear that the steady state

error R increases monotonously with Y . The error R is of order 1 when Y is larger than 1.
Hence, an acceptable steady state cannot be reached unless Y is very small.

Example 3
Consider the scalar equation

@U
@t
+ a

@U
@x
= − c(U − s(x))2 (22)
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Figure 5. The steady state error R=R(Y ) as a function of the sti�ness parameter Y =�tU 0.

Discretize Equation (22) with the Yee–Roe–Davis symmetric second-order TVD scheme
for the space terms [22]. The following parameters are considered:

a=0:05; c=1; s(x)=20 exp(−x2=250)
The initial condition and boundary condition are given by

U (x; 0)=25 for x¿0; U (0; t)=20 for t¿0

The spatial mesh width is �h=0:2. In order to meet CFL= a(�t=�x)6 1, the maxi-
mum allowable time step �t is 4:0. We select �t=3:0 (Y =0:7 estimated). The numerical
solution does not converge to a steady state. Figure 6 displays the numerical results after a
long time integration. We �nd that the nonconverged numerical solution is not smooth, while
the exact solution is a smooth one. When we choose smaller time steps, say �t=0:43 and
�t=0:043 (which corresponds to Y =0:1 and Y =0:01 estimated), the steady state errors are
negligibly small, as can be shown in Figure 7. Figure 8 shows the convergence histories of
the maximum residual for various time steps (or Y ). When the steady state error is large,
the calculation does not converge to zero machine. For �t=3:0; 1:5; 1:0; 0:7 and 0:043, the
residual �U =(Un+1

j − Un
j ) is compared with the theoretical prediction R(Y )(U

n
j − s(xj)) in

Figures 9–13, respectively. When time step is larger, the calculations do not converge. From
these pictures, we can see that the theoretical estimation of the steady state error is close to
the numerical residual. This means that the analytical method for the steady state error built
in Section 2 is useful for the present purpose.

3.4. Third-order nonlinear source term

Now consider the third-order source term de�ned as

S(U )= − c(U − s(x))3 (23)
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Figure 6. Long time solution U 0 in example 3. No steady state can be
obtained for the numerical solution.
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Figure 7. The steady solution U 0 in example 3: Y =0:1 and Y =0:01.
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Figure 8. Convergence histories in terms of the maximal residual for example 3:
�t=0:043(Y =0:01), line 1; �t=0:43(Y =0:1), line 2; �t=1:0(Y =0:23), line 3;

�t=1:5(Y =0:35), line 4; �t=3:0(Y =0:7), line 5.
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Time Step = 3.0

Figure 9. Comparison between the computed numerical residual �U and theoretical
prediction with �t=3:0 in example 3.
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Figure 10. Comparison between the computed numerical residual �U and theoretical
prediction with �t=1:5 in example 3.

According to (15), for the source term (23), the steady state error is given by

R=
3Y 3 + 2Y 4

1 + 3Y (1 + Y )2
(24)

where

Y = c�t(U 0 − s(x))2 (25)

is the sti�ness parameter.
The steady state error (24) is plotted in Figure 14 as a function of Y . When Y is larger

than 0:4, the absolute value of R increases rapidly with Y . Only when Y is much less than 0:4,
the steady state error is small.

Example 4
Consider the scalar equation

@U
@t
+ a

@U
@x
= − c(U − 1)3 (26)

U (x; 0)=2; for x¿0; U (0; t)=2 for t¿0 (27)

where a=0:5 and c=1:0.
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Figure 11. Comparison between the computed numerical residual �U and theoretical
prediction with �t=1:0 in example 3.

For example 4, the sti�ness parameter is Y = c�t(U 0 − 1)2, the steady state error is given
by (24).
The steady state solution of this problem is given by

U =1+
1√

2
c
a
x + 1

(28)

The spatial mesh width is �h=1:0 and the computational domain is [0; 10]. We
select �t=1:5 (CFL=0:75) and 0:5 (CFL=0:25), which correspond to Y =1:5 and Y =0:5;
respectively. The numerical solutions are shown in Figure 15. The solution with �t=1:5 does
not converge to zero machine, as displayed in Figure 16.

3.5. Other kinds of schemes for the source term

In the previous analysis we have just considered an implicit scheme for the source term. Here,
we just consider the source term S(U )= − U 2 and derive steady state errors for two other
kinds of scheme.
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Figure 12. Comparison between the computed numerical residual �U and theoretical
prediction with �t=0:7 in example 3.

(1) Explicit scheme for the source term. When we use an explicit scheme, say the �rst-order
Euler scheme, for the source term, then the time splitting method can be expressed as

�U 1 = U 0 −�tS(U 0)=U 0 + �tU 02 (29)

U 1 = �U 1 + �tS( �U 1) (30)

and the steady state error is given by

R =
U 1 −U 0

U 0 =
−2�t2U 03 −�t3U 04

U 0 = − 2(�tU 0)2 − (�tU 0)3

= −2Y 2 − Y 3 (31)

The steady state error R is plotted in Figure 17, which shows that the steady state error is
very large for large values of Y .
(2) Mixed analytical=numerical method [1]. In this method, the ODE for the source term is
integrated exactly, so that the entire scheme is de�ned by

�U 1 = U 0 −�tS(U 0)=U 0 + �t(U 0)2 (32)

U 1 =
�U 1

�U 1�t + 1
(33)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:77–115



STEADY STATE COMPUTATION OF TURBULENT FLOWS 93

X

(U
n

+1
-U

n
)

0 25 50 75 100
0

5E-08

1E-07

1.5E-07

2E-07

2.5E-07

3E-07

Numerical Computation
Theoretical Prediction

Time Step = 0.043

Figure 13. Comparison between the computed numerical residual �U and theoretical
prediction with �t=0:043 in example 3.

10.750.50.250

0.3

0.25

0.2

0.15

0.1

0.05

0

Y

R

Figure 14. The steady state error function R=R(Y ) for Y =�t(U 0)2.
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Figure 15. The steady solution U 0 in example 4: �t=0:5 and �t=1:5.
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Figure 16. Convergence histories in terms of the maximal residual for example 4.

and the steady state error satis�es

R=
U 1 −U 0

U 0 =
−�t2(U 0)3

U 0(1 +�tU 0 + �t2(U 0)2)
=

−(�tU 0)2

1 + (�tU 0) + (�tU 0)2

=
−Y 2

1 + Y + Y 2
(34)
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Figure 17. The steady state error R as a function of Y for the explicit treatment of the source term.
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Figure 18. The steady state error R as a function of Y for the analytical treatment of the source term.

The steady state error R is plotted in Figure 18, which shows that the steady state error is
very large for large values of Y .
Hence, the qualitative conclusions are almost independent of the scheme for the treatment

of the source term.
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4. STEADY STATE ERROR FOR THE STANDARD k–� TURBULENT MODEL

4.1. The high-Reynolds number k–� turbulence model

The standard k–� turbulence model can be written as

@U T

@t
+
@FTc
@x

+
@GTc
@y

=
@FTv
@x

+
@GTv
@y

+ S (35)

where U T; FTc , and G
T
c are de�ned by

U T =

(
�k

��

)
FTc =

(
�uk

�u�

)
GTc =

(
�vk

�v�

)
(36)

Here, k and � denote the turbulent kinetic energy and turbulent dissipation rate.
The di�usive �uxes FTv and G

T
v are given by

FTv =

⎡
⎢⎢⎢⎣
(
�+

�t
�k

)
@k
@x(

�+
�t
��

)
@�
@x

⎤
⎥⎥⎥⎦ GTv =

⎡
⎢⎢⎢⎣
(
�+

�t
�k

)
@k
@y(

�+
�t
��

)
@�
@y

⎤
⎥⎥⎥⎦ (37)

The source term S is given by

S=

⎡
⎣ �tPk − ��
C�1�t

�
k
Pk − C�2��

2

k

⎤
⎦ (38)

where the production Pk is given by

Pk =
(
@Ui
@xk

− @Uk
@xi

)
@Ui
@xk

(39)

The eddy viscosity is calculated as

�t =C��k2=�

where C�, C�1, C�2, �k and �� are 0:09, 1:44, 1:9, 1:0 and 1:3, respectively.

4.2. Numerical method based on time splitting

The splitting method is divided into two steps:

(1) Advection di�usion part

@ �U
T

@t
+
@FTc
@x

+
@GTc
@y

=
@FTv
@x

+
@GTv
@y

; tn¡t¡tn+1 (40)

�U
T
(tn) = (U T)n (41)
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(2) Source term part

dU T

dt
= S(U T); tn¡t¡tn+1

U T(tn) = �U
T
(tn+1)

(42)

which could be integrated analytically [1–3] or numerically to obtain U T(tn+1) to be used for
the next iteration.

4.3. Steady state errors

In the source term (38), the production terms are always positive while the dissipation terms
are always negative. For convenience, we rewrite the source term as

S=

⎡
⎢⎢⎢⎣

�tPk − C�
�t
(�k)2

C�1(C��t)1=2Pk(��)1=2 − C�2
(
C�
�t

)1=2
(��)3=2

⎤
⎥⎥⎥⎦ (43)

First, consider the k equation. Substitute the �rst expression in (43) into (9), we get

�U =U 1 −U 0 =

[
C�
�t

(
�tPk − C�

�t
(�k)2

)2]
(�t)3

1 + 2
C�
�t
(�k)�t + 2

((
C�
�t
�k
)2

− C�Pk
)
(�t)2

(44)

We just consider the limiting case of vanishing production term. In this case, we have

R=
Y 3

1 + 2Y + 2Y 2

where

Y =
C�
�t
�k ·�t= �

k
�t

is the sti�ness parameter. Obviously, R is an increasing function of Y . Hence, (�=k)�t should
be as small as possible.
Now, consider the � equation. Substitute the second term in (43) into (9), we get

�U = U 1 −U 0 =
�(�t)3 + �(�t)4

8− 	�t − 
(�t)2 − �(�t)3 (45)

� = C33B
−(1=2) + C23C4B

1=2 − 5C3C24B3=2 + 3C34B5=2 (46)

� = C43B
−1 − 2C33C4 + 2C3C34B2 − C44B2 (47)
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	 = 4(C3B−(1=2) − 3C4B1=2) (48)


 = 2(C23B
−1 + 2C3C4 − 3C24B) (49)

� = 1
2(3C

3
3B

−(3=2) − 3C33C4B−(1=2) − 3C3C24B1=2 + 3C34B3=2) (50)

where, C3 =C�1(C��t)1=2Pk , C4 =C�2(
C�
�t
)1=2 and B=��.

Now consider two limiting situations: vanishing production and vanishing dissipation.
Firstly, consider a vanishing production. From (45) we have, for

C3 =C�1(C��t)1=2Pk =0

the following estimation:

R=

3
8

[
�tC�2

(
C�
�t
��
)1=2]3

− 1
8

[
�tC�2

(
C�
�t
��
)1=2]4

1 +
3
2

[
�tC�2

(
C�
�t
��
)1=2]

+
3
4

[
�tC�2

(
C�
�t
��
)1=2]2

− 3
16

[
�tC�2

(
C�
�t
��
)1=2]3

=

3
8
Y 3 − 1

8
Y 4

1 +
3
2
Y +

3
4
Y 2 − 3

16
Y 3

(51)

where

Y =�tC�2

(
C�
�t

)1=2
(��)1=2 =C�2

�
k
�t

In Figure 19 we display the error as a function of Y . It is clear that unless Y is very small,
or strangely near 3, the error is very large. Hence, for the steady state error to be as small
as possible, we require (�=k)�t to be as small as possible, that is

�
k
�t → 0 (52)

Now, consider a vanishing dissipation. The corresponding steady state error is given by

R=
1
8Y

3 + 1
8Y

4

1− 1
2Y − 1

4Y
2 − 3

16Y
3

(53)

where

Y =C�1C�Pk

(
k
�

)
�t (54)

In Figure 20 we display the steady state error de�ned by (53). It is obvious that the steady
state error can be small only if

k
�
�t → 0 (55)
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Figure 19. Steady state error for vanishing production term of the � equation.
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Figure 20. Steady state error of the � equation for vanishing dissipation.

The two constraints (52) and (55) are entirely contradictory. Since the ratio k=� could span
all possible (positive) values in real computation, the time step will be required to be in�nitely
small for the steady state error to be small.
Hence, the time splitting method is nonconvergent for any �nite values of the time step.
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5. NUMERICAL RESULTS

In this section, we will give some numerical results with splitting method and unsplitting
method for k–� turbulent model. The governing equations are obtained by Favre-averaging
the Navier–Stokes equations and modelling the Reynolds stress.
The Favre-averaged Navier–Stokes equations can be written as

@U
@t
+
@Fc
@x
+
@Gc
@y

=
@Fv
@x

+
@Gv
@y

(56)

with

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

�

�u

�v

�E

⎞
⎟⎟⎟⎟⎟⎟⎠
; Fc=

⎛
⎜⎜⎜⎜⎜⎜⎝

�u

�u2 + p

�uv

(�E + p)u

⎞
⎟⎟⎟⎟⎟⎟⎠
; Gc=

⎛
⎜⎜⎜⎜⎜⎜⎝

�v

�vu

�v2 + p

(�E + p)v

⎞
⎟⎟⎟⎟⎟⎟⎠

(57)

Here, �; u; v; p and E denote the density, the x-wise velocity, the y -wise velocity, the static
pressure and the total energy, respectively, and �, with �=1.4 for the present purposes is the
ratio of speci�c heat. For a perfect gas, p=(� − 1)�[E − 1

2 (u
2 + v2) − k]; where we have

included the turbulent kinetic energy k.
The viscous �ux are de�ned by

F�=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

�xx

�xy

u�xx + v�xy − qx

⎞
⎟⎟⎟⎟⎟⎟⎠

G�=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

�yx

�yy

u�yx + v�yy − qy

⎞
⎟⎟⎟⎟⎟⎟⎠

(58)

where � represents the stress tensor and q the heat �ux vector, which are given by

�xx = 2(�+ �t)
@u
@x

− 2
3
(�+ �t)

(
@u
@x
+
@v
@y

)
− 2
3
�k (59)

�yy = 2(�+ �t)
@v
@y

− 2
3
(�+ �t)

(
@u
@x
+
@v
@y

)
− 2
3
�k (60)

�xy = �yx=(�+ �t)
(
@u
@x
+
@v
@y

)
(61)

qx = − �
�− 1

(
�
Pr
+
�t
Prt

)
@(p=�)
@x

(62)

qy = − �
�− 1

(
�
Pr
+
�t
Prt

)
@(p=�)
@y

(63)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:77–115



STEADY STATE COMPUTATION OF TURBULENT FLOWS 101

Here, Pr is the laminar Prandtl number, which is taken as 0.7 for air, Prt is the turbulent
Prandtl number, taken as 0.9. The molecule dynamic viscosity � is assumed to be a function
of the temperature, following the well-known Sutherland’s law.

�=�273

(
T
273

)3=2 273 + T0
T + T0

(64)

where �273 = 17:1 �Pa s; T0 = 110K. The Stokes hypothesis (
= − 2�=3) is adopted.
The convective numerical �ux at the cell interface is evaluated using Roe’s approximate

Riemann solver [23]

Fi+(1=2); j= 1
2[Fc(U

L) + Fc(UR)]− 1
2 |ARoe|(UR −U L) (65)

where U L and UR are the left- and right-hand states of the solution at the interface, constructed
using the MUSCL method [24] to attain higher order accuracy, and ARoe is the well-known
Roe matrix. This means that we use a linear approximation of the solution on each cell to
calculate the interface values, rather than a piecewise constant solution. The MUSCL scheme
is implemented as

U L =Ui; j +
{( s
4

)
[(1− �s)�− + (1 + �s)�+]U

}
i; j

(66)

UR =Ui; j −
{( s
4

)
[(1 + �s)�− + (1− �s)�+]U

}
i; j

(67)

where, �− and �+ are the forward and backward di�erence operators, respectively. The
parameter, �; determines the spatial accuracy of the interpolation. Here, �= + 1

3 is chosen
for a third-order upwind biased scheme. Limiters may be used in order to eliminate spurious
wiggles at discontinuities [25]. In this paper, we have introduced a slope limiter, s, as given
below.

s=
2�+�− + #

(�+)2 + (�−)2 + #
(68)

Here, # is used to avoid denominator to be zero, which is chosen 10−6.
Let R(Un) represent the contribution from the space discretization of the Favre-averaged

Navier–Stokes equations plus the turbulence models. To advance the solution in time, we use
a simpli�ed four-stage Runge–Kutta scheme [26] as de�ned by

U (0) =Un

U (i) =U (0) + �i�tR(U (i−1)); i=1; : : : ; 4

Un+1 =U (4)

(69)

with {�1; �2; �3; �4}= { 14 ; 13 ; 12 ; 1}.
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Table I. The closure coe�cients for turbulence model.

Model C�1 C�2 C� �k ��

JL 1.55 2.00 0.09 1.0 1.3
LS 1.44 1.92 0.09 1.0 1.3
LB 1.44 1.92 0.09 1.0 1.3
HL 1.44 1.92 0.09 1:4− 1:1e−(y
=10) 1:3− 1:0e−(y
=10)

The time step is determined by

�t =
CFL

| ∇� | t1 + | ∇	 | t2

t1 = | �U | + a+ 2 | ∇� | (�+ �T )max
(
4
3
;
�
Pr

)
Ma
Re
1
�

t2 = | �V | + a+ 2 | ∇	 | (�+ �T )max
(
4
3
;
�
Pr

)
Ma
Re
1
�

(70)

For the scheme to be stable, CFL is usually bounded from a value of order of unity. Local
time stepping and implicit residual smoothing [26] are used to accelerate computation.
We solve plane jet �ow problem with Navier–Stokes equations coupled with standard k–�

turbulent model, and solve the other �ow problem with Navier–Stokes equations coupled with
low-Reynolds k–� turbulent models. These low-Reynolds k–� turbulent models include (1)
Jones–Launder model (JL) [6], (2) the Launder–Sharma model (LS) [27], (3) the Lam–
Bremhorst model (LB) [28], and (4) the Hwang–Lin model (HL) [29] low-Reynolds k–�
turbulent model.
Model 2 is actually extensions of the JL model, which have been introduced to improve

some of the drawbacks of the standard k–� model, mainly being the numerical sti�ness
associated with the source terms. The HL model is based on the near-wall characteristic
obtained with direct numerical simulation data. Let y
=

y√
�k=�̃
, Rt ≡ k2

(��̃) , Ry=
√
ky
� ,

S=
√
2Si; jSi; j, Si; j=(Ui; j +Ui; i)=2. The damping functions appearing in the source term (38)

are summarized in Tables I–III.

5.1. Plane jet �ow

This problem has been studied experimentally in Reference [30]. The corresponding Reynolds
number is 3× 104 and Mach number is M∞=0:6. The initial mean velocity pro�le is
de�ned as

u= exp(−81	2); 	=
y

x + 1
(71)

The splitting method diverges, while the unsplit method converges. The convergence histories
are shown in Figure 21. The spreading rate is shown in Figure 22.
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Table II. The damping function for various models I.

Model f1 f2 Tl f�

JL 1 1− 0:3e−Re
2
t

k
�̃

e−[2:5=(1+
ReT
50 )

2]

LS 1 1− 0:3e−Re
2
t

k
�̃

e−[3:4=(1+
ReT
50 )

2]

LB 1 +
(
0:05
f�

)3

1− e−Re
2
t

k
�̃

(1− e−0:0165Ry )2(
1 +

20:5
ReT

)−1

HL 1 1
k
�̃

1− e−0:01y
−0:008y
3



Table III. The damping function for various models II.

Model D Ek E�

JL 2�
(
@
√
k

@n

)2

2�
(
@
√
k

@xk

)2

2��T

(
@2U
@xk@xl

)2

LS 2�
(
@
√
k

@n

)2

2�
(
@
√
k

@xk

)2

2��T

(
@2U
@xk@xl

)2

LB 0 0 0

HL 2�
(
@
√
k

@n

)2

2�
(
@
√
k

@xk

)2

− 1
2
@
@xj
(�
k
�
@D
@xj
) −1

2
@
@xj
(�
�̃
k
@k
@xj
)

5.2. Flat plane �ow

Flow with a zero-pressure gradient was calculated over a �at plate. In�ow Mach is 0.2, and
Reynolds number is 6× 106. A Cartesian mesh with 65 points in the axial direction and 97
points normal to the viscous wall is used to model this �ow. The �rst 16 grid points upstream
of the leading edge of the �at plate are treated as an inviscid wall to provide a uniform pro�le
at the leading edge location. The value of y+ for the �rst layer grid near the wall is no more
than 0:25.
The error L2 is de�ned by

L2 =

√∑
j |R(Un

j ) |2
NTotal

(72)

where NTotal is the total grid number and R(Un
j ) is the space residual.

The convergence history with splitting and unsplit mixed method for four di�erent turbulent
models, respectively, are displayed in Figures 23–26. At the same time steps, the solution is
stable with the method based on unsplitting, while unstable with the method based on splitting
method. Figure 27 shows the velocity pro�le of �at plane at x=0:8. Figure 28 shows the
skin friction.
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Figure 21. The convergence histories for turbulent jet �ow.
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Figure 22. Spreading rate for plane jet �ow. The numerical solution is obtained by the mixed method.
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Figure 23. The convergence history for �at plane (JL model).
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Figure 24. The convergence history for �at plane (LS model).
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Figure 25. The convergence history for �at plane (LB model).
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Figure 26. The convergence history for �at plane (HL model).
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Figure 27. The �at plane velocity pro�le (position x=0:8).
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Figure 28. The �at plane skin friction.
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Figure 29. The Mach contour of transonic di�user for R=0:82 (weak shock).
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Figure 30. The convergence history for transonic di�user (JL model): mixed method.
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Figure 31. The convergence history for transonic di�user (LS model): mixed method.

Iteration Number

lo
g

10
(L

2)

0 5000 10000
-4

-3

-2

-1

0

1

2

unsplitting CFL = 4
splitting CFL = 4

Lam-Bremhorst

Figure 32. The convergence history for transonic di�user (LB model): mixed method.
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Figure 33. The convergence history for transonic di�user (HL model): mixed method.
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Figure 34. The convergence history for transonic di�user (LB model): conventional method.
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Figure 35. The static pressure distribution along bottom wall.
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Figure 36. The static pressure distribution along top wall.

5.3. Transonic di�user

We consider transonic �ow with a weak shock through a converging diverging di�user. The
experiment has been carried out by Sajben and Kroutil [31]. This con�guration has an entrance
to throat area ratio of 1.4, an exit to throat area ratio of 1.5, and a sidewall spacing of
approximately four throat heights. Varying the exit pressure leads to di�erent shock positions
and strengths. The corresponding Reynolds number is 9:370× 105 and the Mach number is
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Figure 37. Velocity pro�les at four axial locations for the Sajben di�user. Numerical results
are obtained with the mixed method.

Ma=0:9. The total pressure at in�ow is 1:349× 105 Pa, the static pressure at the out�ow is
1:11× 105 Pa.
The convergence history with mixed method for various turbulent models is shown in

Figures 30–33. We see the computation based on splitting method fails to converge, while
all models with unsplitting method converge. All computations based on splitting time are
unstable. If we adopt the traditional method based on splitting method to solve the k–� turbu-
lence model, the computation is also unstable. Here, we only give one example in Figure 34.
In this �gure, unsplitting method converge, while splitting method is still unstable for Lam–
Bremhorst turbulence model computation. The computation also shows that the mixed method
can weaken the restriction of the time step size for source term, implicit residual smoothing
can increase the CFL number by a factor of 4, and get convergence at larger time step.
The Mach contour with mixed method for various turbulent models is shown in Figure 29.

The static pressure distribution along the bottom and top walls are shown in Figures 35 and 36,
respectively, in comparison with the experimentally measured values. Figure 37 displays the
velocity pro�les at four axial locations, x=H =2:882; 4:611; 6:340 and 7:493, downstream of the
shock wave. The agreement between computation and experiment is good. Figures 38 and 39
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Figure 38. Turbulent kinetic energy k pro�les at four axial locations for the Sajben di�user.

display the turbulent kinetic energy k and turbulent dissipation rate � pro�les, respectively, at
four di�erent axial locations. Sharp gradients of the turbulent quantities are mainly con�ned
to the near-wall regions.

6. CONCLUDING REMARKS

We have analysed the convergence to a steady state for the time splitting method approxi-
mating the k–� turbulence models. This analysis is based on a proper de�nition of the steady
state error, which is the departure of the numerical solution from the steady state solution.
Comparisons between analysis and numerical computations for a scalar equation with various
source terms support the validity of the analysis. We have, therefore, applied this analysis
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Figure 39. Turbulent dissipation rate � pro�les at four axial locations for the Sajben di�user.

to the case of k–� turbulence models, and found that the time splitting method is always
nonconvergent. Numerical experiments for various kinds of turbulence �ows con�rm that the
time splitting method is always nonconvergent, while the unsplit method could be convergent.
In the future we will attempt to extend the unsplitting mixed analytical=numerical method

to three-dimensional turbulent �ow computations.
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